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ABSTRACT

Hotelling’s T2 procedure for testing the significance of a

mean vector treats all variables symmetrically and may not be

~~~ appropriate if the variables carry unequal importance. The step-

down procedure due to J. Roy (1958), a possibly appropriate

alternative, is studied in this paper. ~n underlying invariance

structure is established and then used to develop a canonical form
for studying the power functions of the two methods . A Monte Carlo

~~~~ experiment is conducted in this framework and conclusions are

reported .
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1. Introduction

The problem of testing the significance of the mean of a random vector

or the equivalent problem of comparing the means of two random vectors arises

in various statistical contexts. The best known solution to the problem is

• based upon Hotelling’s (1931) test and has been extensively studied for

its optimality properties (Anderson 1958) and used in diverse applications

(Xshirsagar 1972; Morrison 1967; Rao 1973). However, some of the properties

which make Hotelling’s T2 elegant and simple may render it inappropriate in

some applications. For example , the “invariant” T2—test treats the variables

symmetrically and consequently may be unsuitable if these variables have unequal

importance in the investigation. Yet the alternatives to the T
2-test are very

few. The purpose of this article is to study one such alternative, namely the

step-down procedure, and compare it with Hotelling’s T
2 

solution.

The step-down reasoning for solving multivariate hypothesis testing problems

was formally initiated by Roy and Bargtnann (1958) in the context of testing

multiple independence. J. Roy (1958) extended it to the problem of testing a

multivariate general linear hypothesis , which includes Hote].ling’s problem as a.

particular case. The step—down solutions assume an a priori ordering of the

variables and involve a sequence of tests of significance. The practical

importance of the step—down procedure also lies in the fact that it permits

recognition of the unequal relevance of the variables in that they can be ordered

according to their importance and the overall type I error probability can be

distributed suitably between the component tests. From the theoretical standpoint

however very little is known about the step-down tests.

- - ~~~~~ ••—-~~~~~~~ •~ —- -- — - • -~ •- -- ---•~ - ~~-,----
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In Section 2 , we outline the step— down procedure for Hotelling’ s problem

and describe an invariance structure in which this procedure as well as the T2—

test are invariant. In Section 3, some properties of step—down procedure for

Motelling’s problem are discussed. Some estimates of the power function of the

step—down procedure based on a Monte Carlo experiment and conclusions are

presented in the final section.

2. Invariance of the step— down procedure

2for Hotelling’s T problem

In canonical form Hotelling’s problem is that of testing a null hypothesis

H
0
: ~ — 0 for a p—variate normal population with mean vector 

~ 
(M

11M 2 r .” ~~~~~
) ’

and positive definite covariance matrix E~ on the basis of a random sample
- ii

X Cx , . . . ,x . ) ‘ , i = 1, 2, ..., n, n > p . If X =  
~ 
X./n andii ‘p - i—l-3~n

S = 
~ 

(x . —X) (X . —X) ’ , then Hotelling’s test rejects H
0 

for large values of
- i—1 -

3_
- •‘-

T2 n (n—l)X’ S 1X , where the cri tical constant for the test is determined by the

fact that under H
0
, (n-p) T2/ [p (n—i) ] has an F-distribution with p and (n—p)

degrees of freedom.

The step-down procedure proposed by J. Roy (1958) for the MANOVA problem, when

particularized for testing H
~
: ~ 0, consists of a sequence of tests based upon

statistics 2 2
• - (n—i) (T~-.T~_1)

F1 [ (ri— l)+T~_ 1] 
‘ ~ = 1, ... , p 

(2.1)

where T~ 0, and denotes Hotelling ’s T2 statistic for testing (U3 ’... ,u~) = 0’

based upon the first i variates, i 1,2 , . .  .p. The null hypothesis H0 
is

rejected as soon as a component test in the sequence shows significance . It is well.

known (3’. Roy 1958; Roy, Gnanadesikan and Srivastava 1971 (p. 473)) that under H0,

the F~s are independently distributed according to F distributions with degrees of

freedom 1 and (n-i). Consequently the size Ct of the overall procedure is
p

related to the levels of the component tests by (i—a) it (l—u~).
i—i 

- 
• - 
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The well known invariance structure underlying the IIANOVA problem (e.g.,

Lebmann 1959; Ferguson 1967) involves the following three groups of transformations:

(i) the translation group which removes the irrelevant observations from consideration,

(ii) the orthogonal groups which reduce the data to the sum of squares and product

matrices H and E due to hypothesis and due to error respectively, and (iii) the

group of premultip].ication by nonsingular matrices, which finally yields the

eigenvalues of HE
1 

as a set of maximal invariants. In this invariance fromework

the T
2 
statistic is maxima]. invariant for Hotelling’ s problem and the T2-test is

best invariant procedure (lehmann 1959, [p. 299)). Alternatively, suff iciency

considerations, instead of the group in (ii), also lead to H and E. In the

case one could dispense with the groups at both the first and the second stages.

Thus among all procedures for H0 based upon the sufficient statistics x and S

which are invariant under transformations x~ = Cx and S* = CSC’ , where C is a

non—singular matrix, the T2 test is known to be (iMP (Anderson 1958, (Thoerem 5.5.1,

p. 115)). Now we show that the step-down statistics are maximal invariants when

the transformation matrices C are restricted to be lower triangular (Theorem 2.1),

and later discuas the nature of the nonnufl. joint—distribution of these statistics

(Thoerem 2.2) .

Theorem 2.1. If T~ denotes Hotelling’s T
2 statistic for testing

~~~~~~~~~~~~~~~~~~~~ 
•‘

~~
‘
~~~~~

‘ 0 based on the first i variates, i = 1,2,...p, where

are the means of the p—variables , then the step—down statistics in (~.l)

are maximal invariants of sufficient statistic (x, S) under the group of

transformations x* Lx, 5* LSL’, where L is a nonsingular lower triangular

matrix.

Proof. The statistics F
1
,F
2
,.. . ,F are invariant , since T~ ,T , .  . . ,T2

remain invariant under nonsingu].ar lower triangular transformations. We now show

that they are maximal invariants. Suppose that two sets of data x, S~ and y,S 



- _—_-__  
-

ft 
a

4

give rise to the same step—down statistics. Let L and L denote lower
-x -y

I —1—
triangular matirices such that S = L L and S = L L , and U = L x

(u1,...,
u ) ’ , v — L

1
y = (v

1
,...,v ) ‘ . Since both sets of data yield the same

~~~ 2 1 2step—down statistics, we have 
j

~~~
j

U

j 

=~~1
v~ i l,...,p, or equivalently

• u, — v . ,  i.e., u. = + v , ,  i = 1,. . .p. Hence v = L 1y = Mu = ~~ x, where M
• 

- 1 1. — - .y. -- ..X _ -
is a diagonal, matrix with either +1 or —1 as the diagonal elements. By taking

L L M L 1 
, we find that y = Lx and S = LS L’, thus completing the proof of

the theorem.

Theorem 2.2. Maximal invariants in the parameter space, under the induced

group of transformations, are i = 1,. ..p. Equivalently , if B is the

lower triangular matrix such that ~ = BB’, and n = B
1 

~i = ~~~~~~~~~~~~~

then maximal invariants are n~, ~~~ ~2

Proof. The Theorem follows from the above Theorem 2.1, by replacing x by

ii, and S by E.

Theorem 2.2 implies that the joint distribution of the step—down statistics

involves only T1~~, i = 1,... ,p, as the non-centrality parameters, and that the

power function of the step-down procedure for Hotelling’s problem depends on these

non-centrality parameters only (I.ehmann 1959, [p. 220, Theorem 3]). Clearly, the

T2 test is also invariant under the transformations considered in Theorem 2.1. Its

2 2 p 2power depends on fl1
,. ..,r~ only through E .p i—i

• Remark 2.1. In the invariance framework , described above , for the MANOVA

problem if the group in (iii) is replaced by the group of nonsingular lower

• - triangular matrices , then it can be shown that the step-down statistics are

invariant. However, they do not appear to be maximal.

3. Some properties of the step-down procedure

In this section we study the unbiasedness and monotonicity of the power

• function of the step—down procedure.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ •.-. __ • __ _•_ •~
_ _ •_•J
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If ~~~~~~~~ are the step—down statistics and a1,...,a~ are the levels

of significance with corresponding critical constants c
1
,.. . ~~~ then the power

function is given by

c1 C

B = 1 — f ... f g1(F1
)g

2 (F 2~F1
) ... g~ (F~J F11...~ F~_1)dF

1...dF~ (3.1)

where g
~ ~~~ 

F
1
,... ,F. 1) denotes the conditional distribution of F~ given

P
u
. .. , F~_3 under the alternative hypothesis at which B is calculated. Then,

we have the following theorem.

Theorem 3.1. The step-down procedure is unbiased, if the component tests are

unbiased.

Proof. Given that the component tests are unbiased, we have

H • 3 g~ (F~ (F 1,..., F11)dF~ .~~~ 
(l— a~ ) for i = l,2 , . . . ,p  and consequently

ci

(1— s) — it (1—ct~) > .w3 L ~~~~~~~~~~~~~~ = 1 — B .

Remark 3.1. Theorem 3.1 holds for the step-down procedure associated with

MANOVA also, where the step—down statistics are independently distributed under

the null hypothesis .

Theorem 3.2. If the component tests are consistent (i.e., the power increases

to one as n + os) , then the step—down procedure is consistent for any fixed

alternative hypothesis. •

- p
Proof. From (3.1) we have I — jlriyi(n)s where y

~
(n) is the probability

of type II error of ith 
component test. Since the component tests are consistent,

(n) -‘ 0 as n -* =, and consequently B -
~~ 1 • J

We now consider the case p * 2 for simplicity and discuss some results

related to the power of the step-down procedure.

Theorem 3.3.. The power function of the step-down procedure for testing

H
0
: (u1~p2

) — (0,0) is an increasing function of if — 0, and an increasing

function of when is fixed.

L -.---_•_ -__ _-.- ~~~~~~~~~~~~~~~~~~~~~~ •~~~~~ • • .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~ • ~~~~~~~~~ ••• . _• •~~~~~~~~~~~~~~~
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Proof. By (2.1), F2 has conditionally a non-central F distribution with d.f.

(1,n—2) and the non—centrality parameter fl~/ ( ( n— l) + F1], it follows that

I(c 2 1~~ / ( ( n—l ) + F1) )  ~~ g2 (F 2~F1)dP 2 (3. 2)

is a decreasing function of fl~ , and increasing function of Similarly,
Cl 2g1(F1)dF1 is a decreasing function of fl1.

It follows easily that if fl2 0, I(c2,T1~/((n—l) + F1) )  is independent of

and consequently (3.1) is an increasing function of fl~ . For a fixed value

of ri1
, I(c

2,fl~
/[(n—l) + F1]) is a decreasing function of implying that

(3.1) also is an increasing function of . 0

For general p , the above theorem may be extended as follows:

Theorem 3.4. The power function of the step-down procedure for testing the

hypothesis ~‘ — 0, is an increasing function of when fl~ ,. .. ,fl~_1 are fixed

and fl~~ 1 = ... t~~~~0, i — l , . ..,p.

The proof is similar to that of Theorem 3.3.

In order to see whether the power function of the step-down procedure is an

increasing function of when is fixed, we may proceed as follows: If we

denote,
t eC2

- 
I~ J0 g2(F2~F1 — x) dF2 if 1 ~~ C

1 •

1(x) —

o.othe~~ise

then E 2(I(x)) — 1—B (n~) as given in (3.1) . Let and be two values of
I ~I

such that I n 1~ 
< t n1I, and g

1
(F
1~n1

),g
1
(F
1
;fl
1
) denote the p.d.f. of

when fl1 
— fl1, and fl1 — respectively. Since the distribut ion of F1 belongs

to montone likelihood ratio family (Lehmann (51, p. 68), there exists a point d

such that g1(x;n 1) ‘ g
1
(x;n

1
) if x ‘C d , and g

1
(x~n1

) ‘C g
1
(x:n 1

) if x > d. But,

- -~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



E~~~(I(x)) — ~~~~ (1(x)) = 3 1(x) (g1(x;n1)—91(x;fl
1
) Jdx

= 

~ 

[g1(x; n1)—g1(x;n1)]dx (3.3)

• • 

~J I(x) [g1(X f l
1
)—g 1

(x 11
1
)3dX

• If c
1 

‘C d, then the first term in the R.H.S. of (3.3) is zero , for which

reason E~ ~ (I ( x))  ‘C B , (1(x))  and the power at fl1 
will be larger than that at

1

fl~ . For c1 > d, (3.3) could be positive, in which case the power at fl
1 

will be

smaller than the power at fl ] .

4. A study of the power function by simulation

In this section we describe a sampling experiment which provides an estimate

of the power function of the step— down procedure (of Section 2) for p = 2.

Without any loss of generality we take E = 12 
the identity matrix of order 2,

in which case the power of the invariant procedures depends upon = and

fl
2 

= ~~~~~~. Consequently we can restrict our attention to non-negative values of

and observe the behavior of the power as p
1 

and p2 change.

The Monte Carlo experiment: The objective of the experiment is to investigate

j the - power function of the step—down procedure and compare it with the power function

2of Hotelling’ $ P procedure . The power of these procedures has been computed for

several values of p
1
, u2

, namely p1 
— 0.0 (0.1) 1.6, and — 0.0 (0.1) 1.9.

The standard normal deviates are generated on the IBM 360/365 computer at the

University of Rochester using “McGill University random number package” based upon

the technique of Marsaglia [6] for generating standard normal deviates. A random

observation from the bivariate normal population N2 Ui, 
1
2
) is obtained by drawing

two random observations from a standard univariate normal population and adding

and to them respectively.

Test pr ocedures conside re d in the simulatio n experiment: For a fixed value of

the power is estimated on th. basis of 3000 samples of size 20 , corre sponding 

- -~~~~~~~
,- - • ---~~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• —~~ _ _— ----~~~~~~~ --~~~ ~~~~~~~
- - ‘ - ~~

- - -
~

•
~~~~~~

—
~~

-
~~
---- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. .  -

i F
8

~~
• to two values of the level of significance a, namely .01 and .05 • After

• each sample of size 20 is drawn , the data are subjecte d to the following tests of

significance, each of the tests being at the two values of ~~~ .

The step—down procedure is applied by setting different values for the levels

of significance a
1

,a
2 

corresponding to the two component tests, such that

r1+r r.
(1—cs) = ( 1—c) 2 (1—a ) = ( 1—c) 1 

, ~ = 1,2. (4.1)

• - The correspondence between a. ’s and r . ’ s is presented in Table 1, with

(r1,r2
) taking values (10, l ) , ( 4 , 1) , (2 , l) , ( l , l ) , ( l ,2 ) , ( l,4) , (1,10) and a = .01

and .05 . The power of a particular procedure at a given value of p is estima ted

(TABLE 1 TO CO HE RE )

by the proportion of times the test rejects H0 in the 3000 trials . -

The power of Hote].].ing’s procedure depends upon + p~ , which is

symmetric in and p~ . Hence the power is obtained for U] > U 2 
using the

routine by Bargmann and Ghosh (1964) for calculating the cdf of a noncentral

F-distribution with (2 , 18) d . f .  and is presented in Table 2 corresponding to

ci = .01, and .05

(TABLE 2 TO GO HERE ) -

Results: Saveral conclusions may be drawn from Table 2 which presents the

exact power function of Hotelling ’s P2 based on noncentral F distribution an&

Tables 3—8 which present some of the estimates of power function of the step—down

procedure based on simulation study.

(1) When r
1 

= r
2
, i.e., a1 

= a2 the simulation indicates a slight

superiority of the step-down procedure over the T
2-test along the corrdinate axes

i .e. ,  = 0 or p
2 

— 0. On the other hand T2—test dominates the step—down

procedure along the equiangular line 
~L

(2 ) As observed in Thoerem 3.3, the power of the step-down procedure

~~~~~~ •~~~~~~~~~~~~ - •—-• 
~~~~~~~~~~~~~~~~~~~~ -

~~~
-
~~~

- -  ——--
~~~~

.-• • - •
~~
-•--. -—

~~~ 
—-

~~~~~~~~~~~~~~~~
•
~~~~~ 
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~~~ ~~

•
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~~~~~~~ 
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corresponding to each value of (r
1
,r
2
), is an increasing function of p1 

if

U
2 

= 0, and an increasing function of U
2 

when U] is fixed , with only a ifew

insignificant exceptions.

(3) The power of the step-down procedure at (U
1, U2

) appears to be an

increasing function of if U~ 
> U

2
, and a decreasing function of if

U
1 

‘C U
2 

Note that for a fixed ~~, may be increased either by increasing

for a fixed value of r2 , or by decreasing r2 for a fixed value of r1. (See Table 1).

(4) When U
1 ~ U~ , a selection of Cr 1, r2

) seems possible such that the power

of the step—down procedure at (U
1
, L1

2
) is larger than that of Hotelling’s p2

procedure. But when 11
1 

= 11
2
, such a selection of (r

1, r2
) is not possible.

(5) The power of the step—down procedure does not seem to be an increasing

• function of U
1 in the range 0.0 to 1.6, for every fixed value of U

2 
> 0.

Conclusion: From the results of the simulation study it may be concluded that

if there is an a priori ordering among the response variables t •ien the step—down

procedure may be used in place of Hotelling ’s T2—test. If the levels of the

component tests are equal then the power function of the step—down procedure is

not very di f ferent from that of T2—test. But by taking the level of the first

component test a1 large , i.e., r1 large , the power of the step—down method in

detecting the significance of p1 can be substantially increased over the

corresponding power of the T2—test .

This conclusion is supported by our earlier work on the multiple comparisons

associated with the step-down procedure (Mudholkar and Subbaiah 1975, 1976). There

we observed that the confidence intervals for the means of the variables appearing

earlier in the step-down sequence are shorter than the corresponding widths

associated with the T2—test , or the largest root test in case of MM~IOVA .

tn summary , when the variables in a multiresponse experiment are of unequal

practical. significance, and are ordered accordingly, a step—down analysis seems to

-~~~~ ~~
• -. - —  —-- • ~~~~~~~~~~~ -
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yield superior inferences on the earlier variables at the expense of the quality

of the in ferences on the later variables , as compared with the corresponding

in ferences obtained using conventional methods such as Hotelling ’s P2

Acknowledgments. The authors are thankful to the referees , the Associate
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1. CORRESPONDENCE BETWEEN r. ’s AND cs. ’s

- sets of (r1, r2)

(10,1) (4 ,1) (2 ,1) (1,1) (1,2) (1,4) (1,10)

- • a • .0091 .0080 .0067 .0050 .0034 .0020 .00091

U
2 

.0009 .0020 .0034 .0050 .0067 .0080 .0091

a .0456 .0402 .0336 .0253 .0170 .0102 .0046
a=,05 1

a2 
.0046 .0102 .0170 .0253 .0336 .0402 .0456

I
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3. THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE ESTIMATED FROM

THE MONTE CARLO EXPERIMENT OF SECTION 4

a .01, r — (10,1)

1.5 .987 .985 .979 .975 .984 .998 1.00 1.00

1.3 .926 .924 .916 .909 .938 .990 1.00 1.00

1.0 .648 .648 .650 .697 .811 .962 .999 1.00

0.7 .246 .257 .282 .422 .660 .935 .997 .999

0.5 .085 .087 . 148 .333 .607 .922 .997 1.00

0.3 .015 .027 .099 .282 .609 .931 .996 1.00

0.1 .013 .021 .092 .260 .580 .930 .995 .999

0.0 .011 .016 .080 .277 .585 .929 .996 .999

0.0 0.1 0.3 0.5 0.7 1.0 1.3 1.5

U
1.

4. THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE ESTIIQ~TED FROM -

TEE MONTE CARLO EXPERIMENT OF SECTION 4

a .01, r — (1,1)

.

1.5 .998 .997 .997 .995 .995 .998 1.00 1.00

1.3 .981 .985 .980 .966 . 976 .996 .999 1.00

1.0 .86 3 .860 .843 .835 .878 .965 .998 .999

1’ 0.7 .479 .485 .479 .530 .672 .924 .993 .998

0.5 .203 .209 .217 .349 .562 .893 .993 1.00

0.3 .043 .059 .107 .244 .531 .889 .992 .999

0.1 .017 .019 .066 .204 .490 .883 .991 .998

0.0 .011 .010 .059 .208 .495 .885 .990 .999

0.0 0.1 0.3 0.5 0.7 3.0 1.3 3.5
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5. THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE ESTIMATED FROM

THE MONTE CARLO EXPERIMENT OF SECTION 4

a — .01, r — (1,10)

1.5 1.00 1.00 .997 .995 .994 • .995 .999 1.00

1.3 .991 .991 .986 .971 .965 .984 .996 .999
S

1.0 .910 .903 .884 . 846 .844 
- 

.916 .983 .997

0.7 .566 .571 .540 .527 .557 .805 .957 .993
2

0.5 .270 .274 .249 .291 .397 .739 .955 .993

0,3 .068 .075 .093 .144 .304 .702 .954 .991

0.1 .017 .015 .028 .085 .273 .692 949 ~~~

0.0 .009 .008 .024 .079 .275 .708 .943 .989

0.0 0.1 0.3 0.5 0.7 1.0 1.3 1.5

U1

6. THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE ESTIMATED FROM

THE MONTE CARLO E XPERIMENT OF SECTION 4

— .05, r — (10,1)

.1.3 .98~ .986 .988 .987 .995 1.00 1.00

1.0 .868 .870 .884 .917 .968 .997 1.00

0.7 .494 . 510 .577 .741 .898 .990 1.00

0.5 .227 .252 .374 .636 .860 .987 1.00

0.3 .076 .102 .279 .554 .845 .990 .999

0.1 .055 .082 .239 .531 .832 .986 1.00

0.0 .051 .070 .232 .548 .831 .987 1.00

0.0 0.1 0.3 0.5 0.7 1.0 1.3
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7. THE POWER FUNCTION OF THE STEP-DOWN ‘ROCEDURE EXTIMP,TED FROM

THE MONTE CARLO E XPERIMENT OF SECTION 4

3 — .05, r — (1,1)

‘1.3 .998 .999 .999 .997 .999 1.00 1.00

1.0 .996 .969 .971 .969 . 985 .998 1.00

0.7 .749 .749 .771 .831 .914 .986 1.00

0.5 .441 .446 .507 .674 .843 .981 1.00

0.3 .163 .179 .295 .507 . 786 .981 .999

0.1 .063 .078 .197 .435 .757 .974 .999

0.0 .052 .060 .182 .457 .757 .975 1.00

0.0 0.1 0.3 0.5 0.7 1.0 1.3

U1

8. THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE ESTIMATED FROM

THE MONTE CARLO EXPERIMENT OF SECTION 4

a .05, r (1,10)

1.3 .999 1.00 .999 .997 .999 1.00 1.00

1.0 .979 .982 .977 .966 .974 .993 1.00

0.7 .815 .825 .809 .814 .851 .965 . 997

U2 
0.5 .530 .529 .527 . 589 . 710 .927 .996

0.3 .217 . 220 .255 . 354 .591. .899 .992

0.1 .065 .074 .116 .243 .511 .886 .992

0.0 .047 .045 .091 .228 .505 .882 .989

0.0 0.1 0.3 0.5 0.7 1.0 1.3
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